

Anvendelse af industriel Al model til forebyggende vedligehold LEAN & SMART Manufacturing conference 25/10-2023

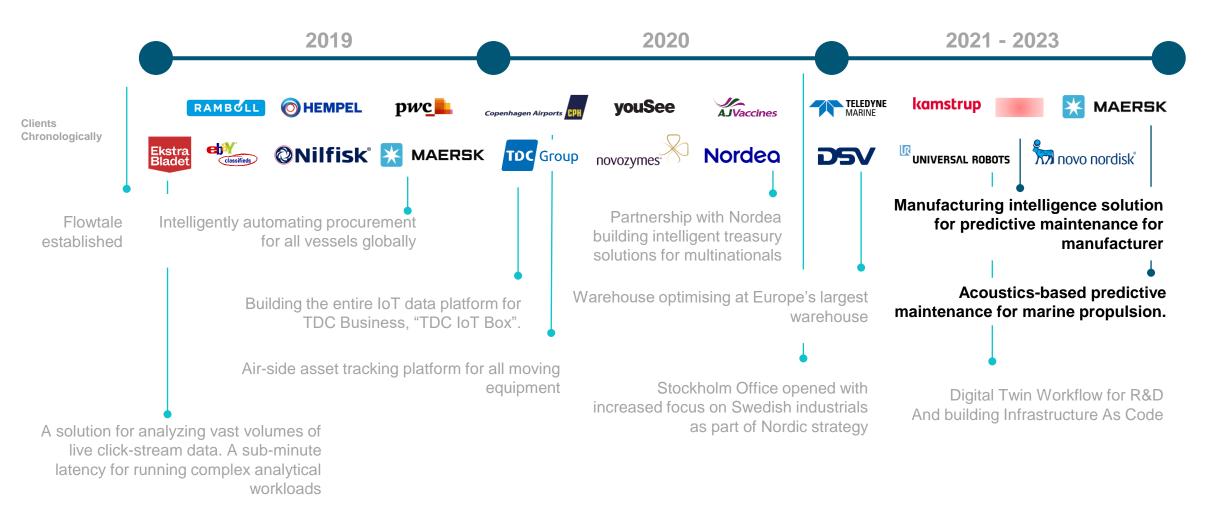
Flowtale

Michael Teglgaard Nielsen CEO

mtn@flowtale.ai

Rasmus Jones Senior Data Scientist

	1 Introduction	Who are Flowtale	How we work Framework & Services	Our journey
Agenda	2 Acoustic predictive maintenance	Data-Driven Planning and Uptime Machine breakdown process	Leverages sound and vibration Successful acoustics stands on three pillars	Choosing the right sensor
	3 USE-CASES	Manufacturer	Maersk	
	4 Benefits	Benefits of Acoustic Predictive Maintenance	Relevancy of acoustics- based predictive maintenance	


INTRODUCTION

FLC TALE introduction & experience in various industries

ACOUSTIC PREDICTIVE MAINTENANCE

Data-Driven Planning and Uptime

Data reliability

IoT solutions provide high-quality, reliable data, serving as the backbone for any effective predictive maintenance system.

ERP Integration

Integrate seamlessly with ERP platforms, enabling these systems to simulate and predict planning with accuracy.

Uptime

Through predictive maintenance, experience improved equipment uptime, leading to optimized operational planning and efficiency.

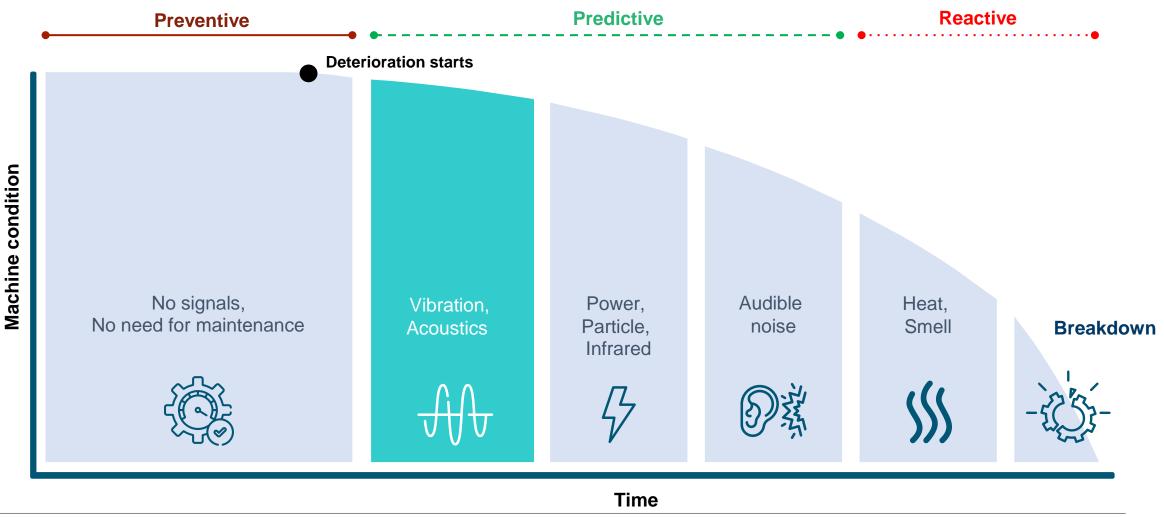
Critical success factors of a predictive maintenance system

Performance

The ability of a model or system to accurately forecast equipment failures or maintenance needs.

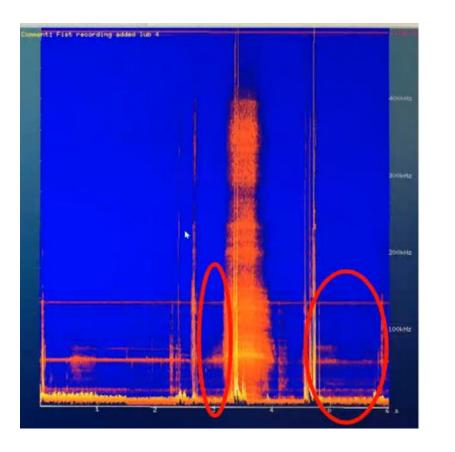
Time-to-failure

Estimated remaining time until a piece of equipment or machinery is expected to experience a critical malfunction or breakdown.



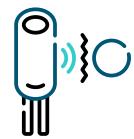
Generalization / scalability

The ability of a machine learning model to effectively apply knowledge learned from historical data to new, unseen equipment or conditions.


Machine breakdown process

Acoustic Predictive Maintenance for Early Equipment Failure Detection

Optimal Spectrogram



Sub-optimal Spectrogram

Successful acoustics stands on three pillars

Sensors

• Sensitivity & Frequency Range Right frequency range sensitivity is vital.

Durability & Environmental Tolerance

Sensors must withstand manufacturing environment.

Positioning & Installation Correct placement is crucial for accurately

Correct placement is crucial for accurate readings.

Preprocessing

Normalization / standardization

Adjusting to common scale to ensure consistent representation.

Operational reproducibility

Ensuring consistent data transformation processes to achieve identical outcomes.

- Expert review
 An expert assessment to train the quality and accuracy of predictions.
- Probability of event

Numerical probability score as output, indicating the likelihood of an event.

Threshold for alert

A predefined probability level, cutoff point, that triggers the alert.

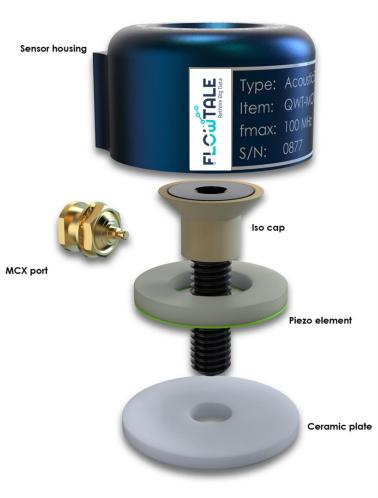
Choosing the right sensor and sensor provided

Sensitivity & Frequency Range

- Operates in required frequency range.
- High sensitivity for subtle changes.
- Good Signal-to-Noise ratio.

Durability & Environmental Tolerance

- Withstands manufacturing conditions.
- Material durability.
- Anecdote: Sensor melted from engine heat.


Positioning & Installation

- Accurate placement for precise readings.
- Easy installation.
- Provider flexibility in setup.

Modern Software Stack

- Python interface for integration.
- Availability of APIs or SDKs.
- Compatible with modern analytics tools.

Case #1 - Plastic moulding at manufacturer

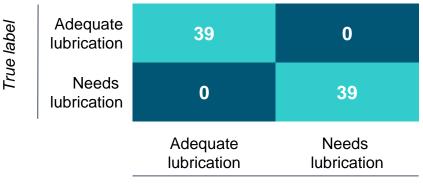
Problem statement

Minimize unexpected mould breakdowns and optimize lubrication schedules using cost-effective, low-frequency sensor data.

Monitoring Setup -

Three specialized surface microphones record mould conditions in various modes.

Results



See the confusion matrix for detailed performance metrics ->

Sensor placements

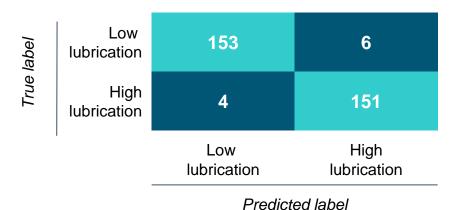
Confusion matrix

Predicted label

Case #2 - Engine pistons on container vessel

Sensor placements

Problem statement


Every 2 years, 282 vessels experience one scuffing event, costing \$55,000 in parts and labour and resulting in 10 hours of downtime per event. Basically prevent breakdown.

Monitoring Setup Acoustic sensors on engine cylinders, signal processing stations, cables to the lubrication control unit, and a visual sensor for RPM data. Furthermore, save oil and the cost that it comes with.

Confusion matrix

Results

Highly accurate predictions.

See the confusion matrix for detailed performance metrics ->

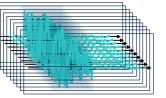
Challenges of Predictive Maintenance for Machine Learning Models

Data and Scalability Challenges

Extensive data requirements for robust machine learning models

Consider the ROI of `data collection vs model performance`

Variance of the data dependent on:


- Sensor types
- Moulding forms
- Engine types

Data Drift: Model degrades as system characteristics evolve

• Requires retraining and potentially new data sources

Annotation bottlenecks

Expertise and resource constraints

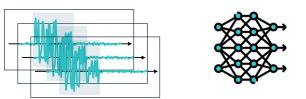
Unsupervised/semi-supervised techniques for automatic annotation and data drift detection

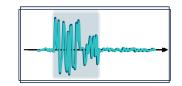
x10.000

Risk of Incomplete Data

Overfitting: Good performance on training set, but generalizes poorly

Think of it as optimizing for quarterly KPIs but missing the annual goals


Lack of data diversity leads to:


· Model bias towards over-represented categories

High Costs of Errors:

• Incorrect predictions can lead to maintenance failures, impacting uptime

Machine Learning models with better data/sample efficiency

Benefits of Acoustic Predictive Maintenance

Source: 1. Barbara Zaparoli Cunha, Christophe Droz, Abdelmalek Zine, Stéphane Foulard, Mohamed Ichchou. A Review of Machine Learning Methods Applied to Structural Dynamics and Vibroacoustic. 2022.

2. Husaković, Adnan, Anna Mayrhofer, Ali Abbas, and Sonja Strasser. 2023. "Acoustic Material Monitoring in Harsh Steelplant Environments" Applied Sciences 13, no. 3: 1843.

3. Valerio Dilda, Lapo Mori, Olivier Noterdaeme, and Christoph Schmitz . McKinsey, Manufacturing: Analytics unleashes productivity and profitability, 2017.

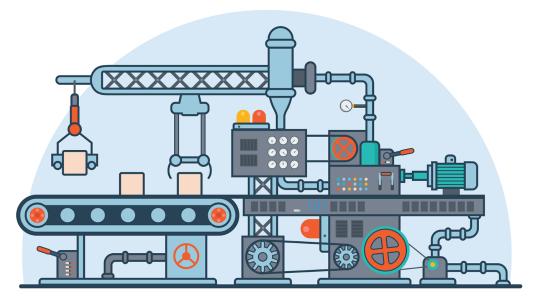
18

Relevancy of acoustics-based predictive maintenance

Acoustics-relevant characteristics

Equipment characteristics with most to gain from choosing specifically vibroacoustic-based maintenance includes:

Rotating Machinery


Such as pumps, motors, fans, compressors, and turbines, can benefit greatly from vibroacoustic-based maintenance.

• Gears and Gearboxes

Gears are uniquely susceptible to wear, pitting, and tooth damage.

Bearings

Specifically for early signs of bearing deterioration, including faults such as rolling element damage or lubrication issues.

Manufacturing

Thank you!

Michael Teglgaard Nielsen CEO <u>mtn@flowtale.ai</u>

Rasmus Jones Senior Data Scientist <u>rj@flowtale.ai</u>